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Abstract. This paper describes a robot system which can follow a specific person
while avoiding obstacles and other people walking around. This system consists
of various functional modules, which are a stereo-based robust person detection
and tracking, a laser range finder-based map generation, and an on-line randomized
motion planning, implemented on a self-contained wheeled mobile robot. All these
modules are implemented using RT-middleware, which enhances software develop-
ment, maintenance, and reusability. The implemented system is tested in a reason-
ably complex environment with several walking people at a time. The experimental
results show the feasibility of the system.
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1. Introduction

Personal service robot is one of the promising areas to which robotics technologies can
be applied. As we are facing the “aging society”, the need for robots which can help
people in their everyday life is increasing. For keeping the Quality of Life of elderly
people, for example, making them feel easy to going out is one of the important issues. A
robot that can move with people like a partner and carrying items will be a useful device
for this purpose. We have been developing such a partner robot, and one of the important
functions of which is following a specific person among obstacles and other people.

The person following task entails several functions: person detection and tracking,
obstacle detection and mapping, motion planning, and robot control. Moreover, these
functions should be reliable enough and should run within a limited time period with a
coordinated way especially when the robot operates in dynamic environments with many
people. It is, therefore, still a challenging work to realize an actual mobile robot that can
follow a specific person in real environments.

Several person following robots have been developed [15,3,9]. These systems use
vision and/or laser range finders to detect persons and to make free space maps. They do
not consider occlusions between person. We have developed a stereo-based person fol-
lowing robot which can cope with occlusions among people [14]. This system, however,
does not recognize static obstacles nor consider other persons in motion planning.

1Corresponding Author: Jun Miura, Toyohashi, Aichi 441-8580, Japan; http://www.aisl.ics.tut.ac.jp/.
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Figure 1. Configuration of the system.

This paper describes a person following mobile robot system and its experimental
evaluation. Fig. 1 shows the configuration of the system. We deal with two kinds of
objects in the environment: persons detected by stereo vision and static obstacles detected
by a laser range finder (LRF). The functions of the three main modules are as follows:

• person detection and tracking module detects persons using stereo and tracks
them using Kalman filtering to cope with occasional occlusions among people.

• local map generation module constructs and maintains an occupancy grid map,
centered at the current robot position, using the data from the LRF. It performs
a cell-wise Bayesian update of occupancy probabilities [12] assuming that the
odometry error can be ignored for a relatively short robot movement.

• motion planning module calculates a safe robot motion which follows a specified
target person and avoids others, using a randomized kinodynamic motion planner.

To develop and maintain the module-based software system, we use RT-middleware [1] 2

environment where each software module is realized as an RT component. Multiple RT
components can run and communicate with on multiple computers distributed over a
local area network.

Performance evaluation in real environments is important in developing dependable
systems. We therefore tested the system in a reasonably complex environment with sev-
eral walking people at a time and analyzed problems to arise.

2. Person detection and tracking

2.1. Related works on visual person detection and tracking

Beymer and Konolige [2] developed a stereo-based person detection based on back-
ground static obstacles subtraction. Howard et al. [7] proposed a visual person detection
method which first converts a depth map into a polar-perspective map on the ground
and then extracts regions with largely-accumulated pixels. Occlusions are not handled
there. Ess et al. [5] proposed to integrate various cues such as appearance-based object
detection, depth estimation, visual odometry, and ground plane detection using a graph-
ical model for pedestrian detection. Although their method exhibits a good performance
for complicated scenes, it is still costly to be used for controlling a real robot. Many lo-
cal feature-based human detectors (e.g., HOG-based detector [4]) have also been shown

2RT-middleware is a specification on a component model and infrastructure services applicable to the do-
main of robotics software development, authorized by OMG (Object Management Group).
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Figure 2. Depth templates.
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Figure 3. Person detection results.
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Figure 4. Training samples for the SVM-based verifier.

to be useful, but they do not provide reliable range information, which is most useful
information in controlling a mobile robot.

2.2. Depth template-based person detection

Our stereo-based person detection and tracking method [14] uses depth templates, which
are the templates for human upper bodies in depth images (see Fig. 2). We made the
templates from the depth images where a person was at about 2 m away from the camera.
We currently have three templates corresponding to three body directions, and use them
simultaneously to find the one with the highest matching value. From the camera position
on the robot, we can constrain the relationship between the person position in the image
and the size and the depth value of the template. This greatly reduces the search space
of the depth templates in person detection. When the robot is continuously tracking a
person, even more reduction is possible by position prediction.

Fig. 3 shows examples of person detection using the depth templates. Three rectan-
gles in each depth image are detection results with the three templates and the one with
bold lines shows the template with the highest evaluation value. In spite of the change of
body direction, a person can be tracked stably.

2.3. SVM-based false rejection

A simple template-based approach is effective in reducing the computational cost but
may produce many false detections for objects with similar silhouettes to person. We
thus apply an SVM-based classifier using image intensity to candidate regions detected
by depth information in order to reject false positives.

Each image region detected by the templates is resized to 20 × 20 pixels and a set of
pixel values is directly used as the input to the SVMs. We use 438 positive and 146 neg-
ative images for the SVM learning. Fig. 4 shows examples of positive and negative sam-



ple images for training. For about 1500 test images, the learned SVM produced no false
positives against negative cases and six percent false negatives against positive cases.

2.4. EKF-based tracking

We adopt the Extended Kalman Filter (EKF) for robust data association and occlusion
handling. The state vector includes the position and the velocity in the horizontal axes
(X and Y ) and the height (Z ) of a person. The vector is represented in the robot local
coordinates and a coordinate transformation is performed from the previous to the current
robot pose every time in the prediction step, using the robot’s odometry information.
Data association is carried out by the gating method based on the Mahalanobis distance.
Color information of the clothing is also used for identifying the target person to follow.

2.5. Performance evaluation of person detection and tracking module

We first evaluated the performance by fixing the robot for 2000 frames. In the frames,
42 persons in total appears and the maximum number of persons in a frame is four. The
success tracking rate was 93.8%. We then evaluated using another set of 2000 frames
taken during the person following by the robot. In the frames, 26 persons in total appeared
and the maximum number of persons was three. The success tracking rate was 96.0%.

3. Motion planning

Motion planning is especially important in realizing an actual person following robot
in dynamic environments. The robot needs to choose a reasonably efficient safe motion
within a limited time period. It is also necessary to consider kinodynamic constraints of
the robot [8,10]. In this paper, we propose a variant of randomized kinodynamic mo-
tion planner based on a predefined motion set [8], which additionally utilizes a bias for
generating goal-directed safe motions.

Inputs to the planner are static obstacles, composed of cells with probabilities higher
than a threshold (currently, 0.7) in the local map, and dynamic ones (i.e., persons) with
their position and velocity estimates. The current position of the target person is set as
the local destination for planning. The planner is invoked every time person and obstacle
information is updated.

3.1. Randomized kinodynamic motion planning

The planner is given a predetermined set of possible motions, each of which is specified
by a pair of the translational and the rotational velocity and satisfies the kinematic con-
straints. To consider dynamic constraints, we perform motion planning in a state space
describing the robot pose and its derivative. By considering the limited acceleration of
the wheels, possible transitions (i.e., motions) from a state are enumerated as follows:

1. Convert the velocity pair of the state into a velocity pair of both wheels.
2. Calculate the ranges of the right and the left wheel velocity considering the ac-

celeration limitation.
3. Choose a set of motions whose wheel velocities are within the above ranges.
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Figure 5. Biases and tree generation.

We perform a weighted randomized planning, by expanding a tree with the current
state being the root. The possible set of feasible motions is calculated for each node on-
line and the weight of each motion is given by the bias at the predicted end position of
the motion. We repeat the tree expansion until the time reaches the limit. Once the tree
construction ends, we select the most promising path and use only the first motion in the
path as the robot command to be executed in the next cycle.

3.2. Collision check by state prediction in time-space

A motion can be a candidate if it does not cause collision with obstacles. Collision with
dynamic obstacles (i.e., persons) is checked in time-space [11] on a fixed set of time
slices. Using the cycle time (currently, 500 ms) and the number of slices (currently, 5),
we predict in each time slice both the state of the robot to be achieved by a selected
motion and the possible spatial range of each dynamic obstacle in order to see if any
collisions occur. At present, a simple constant speed motion model is used for motion
prediction of other persons.

3.3. Biases for controlling randomized tree expansion

Randomized motion planning algorithms often give biases to nodes (i.e., reachable
states) in the tree being expanded so that the tree grows in a favorable way. A density bias
is, for example, often used for expanding the tree towards less densely-sampled regions
[8]. It is also important to guide the expansion to globally better directions. Rodriguez
et al. [13] proposed to combine a PRM-based global planner with a kinodynamic local
planner. We take a similar approach but set a potential field over the entire free space,
instead of selecting only one most promising global motion, for guiding local planning.

We need to provide a goal-directed bias in the tree expansion so that the resultant
motion is efficient (near to the shortest path) and safe (keep some distance from obsta-
cles). We therefore set a potential over the free space on which such a motion will gain a
large potential increase. Since this potential calculation should be done on-line, we pro-
pose to adopt a level set method-based potential calculation [6]. This first sets a velocity
field in which the velocity of a position becomes higher as the distance from obstacles to
the position becomes larger, and then propagates a wavefront using the velocity field.

We use above-mentioned two kinds of biases: the goal-directed bias and the density
bias. Fig. 5 shows an example of the biases and the tree expansion. For a free space map
(blue region in Fig. 5(a)), the goal-directed bias (see Fig. 5(b)) and the density bias (see



Fig. 5(c)) are generated and their multiplication is used as the final bias (see Fig. 5(b)) to
guide the tree expansion (yellow lines in Fig. 5(a)).

3.4. Path selection

Each path from the root to a leaf represents a feasible robot path. We would like to select
a longer and faster path. So we evaluate each leaf node using its bias value (i.e., the
potential value at that node position) and the averaged speed from the root to that node.

Suppose there are K leaf nodes. For each leaf node k, let �B(k) be the increase of
the bias value from the root to node k and V (k) is the average velocity of the path to
node k, respectively. These two values are nondimensionalized by using the means and
the variances of the corresponding values of every leaf node. The best leaf node k ∗ (and
therefore the best path which leads to k ∗) is determined by:

k∗ = arg max
k

{w · �B(k) + (1 − w) · V (k)} , (1)

where w (0 ≤ w ≤ 1) is a weight determined empirically. Once the best path is selected,
the very first motion of the path is selected and sent to the robot controller.

3.5. Reuse of the previous path

Every time the environment information (i.e., obstacle map and persons) is updated using
the latest sensor data, the whole path planning process, which is composed of the bias
calculation, the tree expansion, and the path selection, is performed from scratch. The
only exception is the reuse of the selected path in the previous cycle. Since this path is
likely to be effective in the current cycle, we examine the path from the root to the leaf
and the partial path to the node which is safe (i.e., collision-free) and the farthest from
the root is used as a part of newly-expanded tree.

3.6. Best-first planner in simple situations

The kinodynamic motion planner inherently has a slight possibility of producing an inef-
ficient motion due to its randomized nature. In a simple situation, like the one where the
robot can see the target person in a wide space, an efficient motion can easily be gener-
ated. Since it is difficult to judge if the current situation is simple (for motion planning, of
course) only from the generated map and person information, we always try to generate
a simple motion using a heuristic motion planner. The planner runs with some time limit
and if the planning is not successful, the kinodynamic motion planner is invoked.

The simple planner we use is a best-first version of the kinodynamic planner. It
selects the best motion repeatedly until the node reaches the goal position or the allocated
time elapses. Each node is evaluated by the following expression:

KL · L + Kθ |θ |,
where L is the Euclidean distance to the goal position and θ is the angle difference
between the robot orientation and the direction of the robot; K L and Kθ are constant
weights. The smaller this expression is, the better the node is.

This best-first planner does not consume much time because it is very efficient and
runs with a limited time.



4. Experiments

4.1. Hardware configuration

We use the robot (PeopleBot by MobileRobots Inc.) (see Fig. 6) for in-room experiments.
It is equipped with a stereo camera (Bumblebee2 by Point Grey), a laser range finder
(UHG-08LX by Hokuyo), and a Note PC (Core2Duo, 2.6GHz, 3GB memory). The PC
is in charge of all necessary processing; the image processing and the motion planning
part actually run in parallel using the two cores. We also use another robot system which
has the same sensors on a different mobile platform, a computer-controllable electric
wheelchair (by Kanto Auto Works Ltd.) (see Fig. 7).

4.2. Control algorithm and implementation

The robot repeats the following steps: (1) person detection and tracking (Sec. 2) and
mapping, (2) motion planning (Sec. 3), and (3) motion execution. Since the cycle time is
set to 500 ms and Step 1 takes about 100 ms, Step 2 can use about 400 ms. The number
of nodes generated during the randomized sampling depends on the complexity of the
environment but 1, 400 ∼ 1, 500 nodes are usually generated. Note that the cycle time
is a parameter that can be adjusted to respective situations. All functional modules have
been developed as RT-components, as described above.

4.3. Experimental result

4.3.1. In-room experiment

Fig. 6 shows a result of person following in a small room. The robot automatically fol-
lows the red person while avoiding static and dynamic obstacles. Rows indicate, from top
to bottom, the views from the camera in the environment, those from the robot camera,
and the map generation and the motion planning results, respectively. In the map, blue,
green, and black regions indicate free spaces, static obstacles, and margins considering
the robot size, respectively; the orange and the red circles in the maps indicate the robot
and the target person.

In the second and the third column, another person passes between the robot and the
target person. The triangles in the maps moving rightward indicate that passing person.
The robot recognizes the situation correctly and plans a safe motion. In the first and the
fourth column, the robot find a path without the randomized planning, because the target
person is right ahead and no obstacles exist between the robot and the person.

4.3.2. Experiments in a more complex environment

We next chose the university cafeteria as a more complex environment for person follow-
ing. We performed experiments more than ten times and the robot successfully follows
a specified person while avoiding other persons and static obstacles. The average speed
of the robot was about 0.3 m/s. The target person walked at a similar speed so that the
robot caught him up, while other persons walked at a normal speed of about 1.0 m/s.
Fig. 7 shows snapshots of an experimental run of about 40 m long.

Fig. 8 shows an example of the recognition and the planning result. From the stereo
data (see Fig. 8(a)), the robot detected two persons, the target on the left and the other on
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Figure 6. Person following result in an experimental room.
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Figure 8. An example of environment recognition and motion planning.

the right (see Fig. 8(b)). Fig. 8(c) shows the result of environment recognition and motion
planning. The rightmost non-target person is outside the field of view of the camera; the
EKF-based tracker predicted his position. Fig. 9 shows an occlusion scene. If the target
person is not detected, the robot set his/her latest detected position as a subgoal. The
robot makes a plan to avoid the front person.

Visual recognition is sometimes difficult in a real world due to, for example, a great
variety of environments and illumination conditions. The proposed person detection and
tracking method is relatively robust thanks to stereo-based range information, but some-
times fails to recognize persons correctly. Fig. 10 shows some recognition failure cases.
Cases (a) and (b) are due to the failure of SVM-based person verification. Case (c) is
the failure of target identification using color due to a bad illumination. Use of other
visual features (e.g., HOG) and/or other sensors (e.g., a laser range finder) is a possible
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Figure 9. An occlusion scene.

(a)  false positives by SVM (b) false negative by SVM (c) target identification error

Figure 10. Visual person detection errors.

improvement of the system.
Even if such improvements are made, however, it is still difficult to completely avoid

visual recognition failures. In the case of our current system, since the robot moves to the
previous target position when he/she is not detected, it can continue to follow him/her
after a short non-detection period. In the case of our experiments with ten runs, the robot
did not correctly localize the target for about 15% of the total frames, but could fol-
low the target person without failure. It is, therefore, necessary to consider not only the
robustness of each functional module but also that of the whole system.

4.4. On reusability of the modules

Appropriate functional decomposition is a key to simultaneously achieving a high
reusability of modules and a high performance of the system. We considered several is-
sues in the decomposition such as hardware dependency, unified interface between mod-
ules, cycle time and traffic of communication between modules.

To show the reusability of the developed modules, we exhibited an extended ver-
sion of the proposed person following robot system, which additionally had an SLAM
capability, at the International Robot Exhibition 2009 held in Tokyo on November 25-
28, 2009. At the exhibition, we demonstrated two configurations of the person follow-
ing robot which were different only at the mobile base and the stereo vision with cor-
responding software modules. The other parts of the system were reused without any
modifications. This indicates that a certain level of reusability has been achieved.

5. Conclusion

This paper has described an implementation of person following robot system. The sys-
tem integrates the necessary functions including person detection and tracking, map gen-
eration, motion planning, all of which run on-line, in a self-contained mobile robot. We



tested the system in a reasonably complex environment to show the feasibility of the sys-
tem and to analyze the remaining problems. Each functional module has been developed
as an RT-component, which can easily be reused and connected with other components
running on RT-middleware.

For more robust and efficient person following, several improvements are possible
such as the use of other sensory features, the use of a more accurate motion model of
persons specific to each environment, and speeding up each part of the system for coping
with more dynamic situations.
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